If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1a^2+14a=-18
We move all terms to the left:
1a^2+14a-(-18)=0
We add all the numbers together, and all the variables
a^2+14a+18=0
a = 1; b = 14; c = +18;
Δ = b2-4ac
Δ = 142-4·1·18
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{31}}{2*1}=\frac{-14-2\sqrt{31}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{31}}{2*1}=\frac{-14+2\sqrt{31}}{2} $
| 5.5x-3=-10 | | a-12+a+18=a+48 | | -(x+4)=2x+26 | | -x+235=85 | | 3x-2x^2=-1 | | 2(3m-4)=6m+6 | | 32=199-v | | 17g+4g−10g−5g=6 | | 2(3m-4=6m+6 | | -4w=-2w+18 | | x+20+6x-40=180-3x | | 0=20-2.75x | | u-5+6=24 | | 6d-5d-d+d=10 | | 19-p=-17+6p-p | | 2(x-21)=6(x+1) | | (80·u)·24=80·(85·24) | | -13-6v=-14v+11 | | -7=3(x+3)-5x | | h+300/5=76 | | -4f+8=-2f | | z·1=32 | | 8m+4m-11m=20 | | -9n+9=-8n+1 | | -5+8x-9=3 | | 7-3q=-10q | | 9r-8r=2-r-r=14 | | 4x-16=6x-5 | | 34+5y=64 | | 10+3m=8 | | 6-8j=6+10j | | 78+x=41+78 |